当前位置: 首页 > news >正文

淘客做网站站长之家查询域名

淘客做网站,站长之家查询域名,福建建设人才市场官方网站,用源码怎么做网站视频中所出现的代码 Tavily SearchRAG 微调Llama3实现在线搜索引擎和RAG检索增强生成功能!打造自己的perplexity和GPTs!用PDF实现本地知识库_哔哩哔哩_bilibili 一.准备工作 1.安装环境 conda create --name unsloth_env python3.10 conda activate …

视频中所出现的代码 Tavily Search+RAG

微调Llama3实现在线搜索引擎和RAG检索增强生成功能!打造自己的perplexity和GPTs!用PDF实现本地知识库_哔哩哔哩_bilibili

一.准备工作

1.安装环境

conda create --name unsloth_env python=3.10
conda activate unsloth_envconda install pytorch-cuda=12.1 pytorch cudatoolkit xformers -c pytorch -c nvidia -c xformerspip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"pip install --no-deps trl peft accelerate bitsandbytes

 2.微调代码(要先登录一下)

huggingface-cli login

点击提示的网页获取token(注意要选择可写的)


#dataset https://huggingface.co/datasets/shibing624/alpaca-zh/viewerfrom unsloth import FastLanguageModel
import torchfrom trl import SFTTrainer
from transformers import TrainingArgumentsmax_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.# 4bit pre quantized models we support for 4x faster downloading + no OOMs.
fourbit_models = ["unsloth/mistral-7b-bnb-4bit","unsloth/mistral-7b-instruct-v0.2-bnb-4bit","unsloth/llama-2-7b-bnb-4bit","unsloth/gemma-7b-bnb-4bit","unsloth/gemma-7b-it-bnb-4bit", # Instruct version of Gemma 7b"unsloth/gemma-2b-bnb-4bit","unsloth/gemma-2b-it-bnb-4bit", # Instruct version of Gemma 2b"unsloth/llama-3-8b-bnb-4bit", # [NEW] 15 Trillion token Llama-3
] # More models at https://huggingface.co/unslothmodel, tokenizer = FastLanguageModel.from_pretrained(model_name = "unsloth/llama-3-8b-bnb-4bit",max_seq_length = max_seq_length,dtype = dtype,load_in_4bit = load_in_4bit,# token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf
)model = FastLanguageModel.get_peft_model(model,r = 16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128target_modules = ["q_proj", "k_proj", "v_proj", "o_proj","gate_proj", "up_proj", "down_proj",],lora_alpha = 16,lora_dropout = 0, # Supports any, but = 0 is optimizedbias = "none",    # Supports any, but = "none" is optimized# [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes!use_gradient_checkpointing = "unsloth", # True or "unsloth" for very long contextrandom_state = 3407,use_rslora = False,  # We support rank stabilized LoRAloftq_config = None, # And LoftQ
)alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.### Instruction:
{}### Input:
{}### Response:
{}"""EOS_TOKEN = tokenizer.eos_token # Must add EOS_TOKEN
def formatting_prompts_func(examples):instructions = examples["instruction"]inputs       = examples["input"]outputs      = examples["output"]texts = []for instruction, input, output in zip(instructions, inputs, outputs):# Must add EOS_TOKEN, otherwise your generation will go on forever!text = alpaca_prompt.format(instruction, input, output) + EOS_TOKENtexts.append(text)return { "text" : texts, }
passfrom datasets import load_dataset#file_path = "/home/Ubuntu/alpaca_gpt4_data_zh.json"#dataset = load_dataset("json", data_files={"train": file_path}, split="train")dataset = load_dataset("yahma/alpaca-cleaned", split = "train")dataset = dataset.map(formatting_prompts_func, batched = True,)trainer = SFTTrainer(model = model,tokenizer = tokenizer,train_dataset = dataset,dataset_text_field = "text",max_seq_length = max_seq_length,dataset_num_proc = 2,packing = False, # Can make training 5x faster for short sequences.args = TrainingArguments(per_device_train_batch_size = 2,gradient_accumulation_steps = 4,warmup_steps = 5,max_steps = 60,learning_rate = 2e-4,fp16 = not torch.cuda.is_bf16_supported(),bf16 = torch.cuda.is_bf16_supported(),logging_steps = 1,optim = "adamw_8bit",weight_decay = 0.01,lr_scheduler_type = "linear",seed = 3407,output_dir = "outputs",),
)trainer_stats = trainer.train()model.save_pretrained_gguf("llama3", tokenizer, quantization_method = "q4_k_m")
model.save_pretrained_gguf("llama3", tokenizer, quantization_method = "q8_0")
model.save_pretrained_gguf("llama3", tokenizer, quantization_method = "f16")#to hugging face
model.push_to_hub_gguf("leo009/llama3", tokenizer, quantization_method = "q4_k_m")
model.push_to_hub_gguf("leo009/llama3", tokenizer, quantization_method = "q8_0")
model.push_to_hub_gguf("leo009/llama3", tokenizer, quantization_method = "f16")

3.我们选择将hugging face上微调好的模型下载下来(https://huggingface.co/leo009/llama3/tree/main)

4.模型导入ollama

下载ollama

 导入ollama

FROM ./downloads/mistrallite.Q4_K_M.gguf
ollama create example -f Modelfile

二.实现在线搜索

1.获取Tavily AI API 

Tavily AI

export TAVILY_API_KEY=tvly-xxxxxxxxxxx

 2.安装对应的python库

install tavily-python

pip install phidata

pip install ollam

3.运行app.py

#app.py
import warnings# Suppress only the specific NotOpenSSLWarning
warnings.filterwarnings("ignore", message="urllib3 v2 only supports OpenSSL 1.1.1+")from phi.assistant import Assistant
from phi.llm.ollama import OllamaTools
from phi.tools.tavily import TavilyTools# 创建一个Assistant实例,配置其使用OllamaTools中的llama3模型,并整合Tavily工具
assistant = Assistant(llm=OllamaTools(model="mymodel3"),  # 使用OllamaTools的llama3模型tools=[TavilyTools()],show_tool_calls=True,  # 设置为True以展示工具调用信息
)# 使用助手实例输出请求的响应,并以Markdown格式展示结果
assistant.print_response("Search tavily for 'GPT-5'", markdown=True)

 三.实现RAG

1.git clone https://github.com/phidatahq/phidata.git

2.phidata---->cookbook---->llms--->ollama--->rag里面 有示例和教程

修改assigant.py中的14行代码,将llama3改为自己微调好的模型

另外需要注意的是!!!

要将自己的模型名称加入到app.py里面的数组里

streamlit  run  /home/cxh/phidata/cookbook/llms/ollama/rag/assistant.py

http://www.ysxn.cn/news/3038.html

相关文章:

  • 企业做网站需要注意什么军事新闻最新
  • 怎做网站2021年关键词有哪些
  • 土地流转网站建设项目自己怎么做网页
  • 德州网站收录培训班学员培训心得
  • 昌邑网站设计app推广软文范文
  • java做网站用什么做百度拍照搜题
  • 网站建设的前景友情下载网站
  • 网站开发 非对称加密站长之家seo工具包
  • 游戏代理是做什么的优化关键词首页排行榜
  • 网页设计与制作100例hbuiderxseo网站关键词优化怎么做
  • 网站开发公司能不能去seo排名平台
  • 通州建设委员会官方网站seo营销策划
  • 青岛公司网站建设公司排名手机广告推广软件
  • 青海西宁网站开发公司网站seo诊断
  • 自治区党风廉政建设网站免费产品推广网站
  • 求网页设计与网站建设知乎推广渠道
  • 厦门设计师网站进入百度搜索网站
  • 微信网站和手机网站的区别推广普通话海报
  • 有没有个人做试卷网站的网站推广优化方式
  • 做类似淘宝的网站设计需要什么腾讯企点注册
  • php网站开发教程图片优化网站推广教程整站
  • 做影视网站如何加速啦啦啦资源视频在线观看8
  • 深圳网站建设怎样容易中文网站排行榜
  • 郑州管城建设网站成都百度
  • 和田哪里有做网站的地方网站搜索引擎优化诊断
  • 深圳制作网站的公司百度关键词优化策略
  • 网站建设数据库的链接电商代运营
  • aspx网站开发教程seo建站是什么意思
  • 河北省城乡建设培训网官方网站新媒体
  • 有没有做代理商的明细网站制作网站的工具