当前位置: 首页 > news >正文

oa和erp系统区别seo网站关键词优化费用

oa和erp系统区别,seo网站关键词优化费用,邯郸wap网站建设,代做网站灰色关键词问题:上一篇的案例,真的患癌症的,能被检查出来的概率? 一、精确率和召回率 1、混淆矩阵 在分类任务下,预测结果(Predicted Condition)与正确标记(True Condition)之间存在四种不同的组合,构成混淆矩阵(适…

问题:上一篇的案例,真的患癌症的,能被检查出来的概率?

一、精确率和召回率

1、混淆矩阵
在分类任务下,预测结果(Predicted Condition)与正确标记(True Condition)之间存在四种不同的组合,构成混淆矩阵(适用于多分类)

预测结果:是预测值
正确标记:是真实值
用来求精确率和召回率的

TP = True Possitive
FN = False Negative
FP = False Possitive
TN = True Negative

2、精确率(Precision)与召回率(Recall)
精确率:预测结果为正例样本中真实为正例的比例

即是,TP / (TP + FP)

召回率:真实为正例的样本中预测结果为正例的比例

即是,TP / (TP + FN)

3、真的患癌症的,能被检查出来的概率 - 召回率

二、F1-score

1、反映了模型的稳健性

等价于:2*精确率*召回率 / (精确率 + 召回率)
Precision是预测的好瓜中有多少真正的好瓜,Recall是所有真正的好瓜被预测对了多少

三、分类评估报告API

1、sklearn.metrics.classification_report(y_true, y_pred, labels=[], target_names=None)
y_true:真实目标值
y_pred:估计器预测目标值
labels:指定类别对应的数字
我们在传y_true、y_pred传的是数字,将数字表示出来
target_names:目标类别名称
分类报告显示
return:每个类别精确率与召回率

2、在上一篇代码后添加

# 查看精确率、召回率、F1-score
from sklearn.metrics import classification_reportreport = classification_report(y_test, y_predict, labels=[2, 4], target_names=["良性", "恶性"])print(report)

运行结果:

support是样本数量

四、样本不均衡的情况

1、假设这样一个情况,总共有100个人,如果99个样本癌症,1个样本非癌症,不管怎样我全都预测正例(默认癌症为正例),准确率就为99%但是这样效果并不好,这就是样本不均衡下的评估问题
准确率:99%
召回率:99 / 99 = 100%
精确率:99 / 100 = 99%
F1-score:2*99%*100% / 199% = 99.497%

就是瞎猜,全都蒙成换了癌症,不负责任的模型
这种情况我们是要避免的,我们目前学习到的这些分类指标都不能反映出它的问题所在
样本不均衡,正样本太多,反例太少

五、ROC曲线与AUC指标

1、ROC曲线
蓝色的线是ROC曲线

2、AUC指标
ROC曲线和x轴、y轴包成的区域的面积

衡量好坏,我们看的是AUC指标,AUC越接近1越好,越接近0.5越不好

3、ROC曲线是怎么来的
TPR = TP / (TP + FN) - 就是召回率
所有真实类别为1的样本中,预测类别为1的比例
FPR = FP / (FP + FN)
所有真实类别为0的样本中,预测类别为1的比例

TPR是正例的召回率,FPR是反例的召回率
ROC曲线就是由TPR和FPR这两个指标构成的

当TPR=FPR:
正例的召回率、反例的召回率都为1,说明是在瞎猜,就是红色的斜线,面积是 1*1/2 = 0.5

当TPR>FPR:
TPR接近于1,FPR接近于0,就是接近于Perfect Classification,面积是 1*1=1

当TPR<FPR:
就是一条反曲线,做反向预测用

4、AUC的意义
(1)AUC的概率意义是随机取一对正负样本,正样本得分大于负样本的概率
(2)AUC的最小值为0.5,最大值为1,取值越高越好
(3)AUC=1,完美分类器,采用这个预测模型时,不管设定什么阈值都能得出完美预测。绝大多数预测的场合,不存在完美分类器
(4)0.5<AUC<1,优于随机猜测。这个分类器(模型)妥善设定阈值的话,能有预测价值
(5)最终AUC的范围在[0.5, 1]之间,并且越接近1越好

六、AUC的计算API

1、sklearn.metrics.roc_auc_score(y_true, y_score)
计算ROC曲线面积,即AUC值
y_true:每个样本的真实类别,必须传0(反例),1(正例)
y_score:可以是预测得分,可以是正例的估计概率、置信值或者分类器方法的返回值

2、代码

y_test.head()# y_true:每个样本的真实类别,必须传0(反例),1(正例)
# 将y_test转换成0,1
y_true = np.where(y_test > 3, 1, 0)y_truefrom sklearn.metrics import roc_auc_scoreroc_auc_score(y_true, y_predict)

运行结果:

七、小结

AUC只能用来评价二分类
AUC非常适合评价样本不平衡中的分类器性能
 

http://www.ysxn.cn/news/2638.html

相关文章:

  • 做网站服务器还是虚拟空间好北京网站
  • 北京网站建设备案seo职位要求
  • 网站建设低价建站真赚钱了吗长春网络科技公司排名
  • 青海政府网站建设公司石家庄百度快速排名优化
  • 水产网站模板seo咨询解决方案
  • 海口北京网站建设北京网站建设公司大全
  • 想要弄一个网站怎么弄关键词异地排名查询
  • wordpress被刷搜索网络seo
  • wordpress商品插件seo外包资讯
  • 合山网站建设百度客户服务电话是多少
  • pageadmin政府网站管理系排名优化方案
  • 通州广州网站建设推广引流app
  • 百度网站建设中心成人英语培训
  • 汽车门户网站程序自己做网络推广怎么做
  • 武汉学做网站google秒收录方法
  • 简历网站免费网站网络推广公司
  • 奉贤武汉阳网站建设宁波网络推广方式
  • 卓航网站开发新开网站
  • 哪种语言做网站网站推广方法有哪些
  • 上海网站建设网页制企业在线培训系统
  • 宁波网络公司做网站网站推广的概念
  • 上海建设工程质监局网站营销型企业网站制作
  • 给一个网站网络营销常见的工具
  • 服务态度 专业的网站建设成都seo正规优化
  • wordpress中的网易云福建seo排名
  • jsp网站开发简单代码常见的网络直接营销有哪些
  • 网站没有问题但是一直做不上首页如何制作企业网站
  • b2b外贸网站软文外链代发
  • 爱空间网站模板百度小说风云榜今天
  • 个人网站备案内容描述企业网站推广有哪些